Benchmarking Big Data in the Data Center: A TU Delft Perspective

Alexandru Iosup

Delft University of Technology The Netherlands

Team: Undergrad Tim Hegeman, ... Grad Yong Guo, Mihai Capota, Bogdan Ghit Researchers Marcin Biczak, Otto Visser Staff Henk Sips, Dick Epema Collaborators* Ana Lucia Varbanescu (UvA, Ams), Claudio Martella (VU, Giraph), KIT, Intel Research Labs, IBM TJ Watson, SAP, Google Inc. MV, Salesforce SF, ...

* Not their fault for any mistakes in this presentation. Or so they wish.

August 6, 2014

5th WBDB, Potsdam, 2014

(TU) Delft – the Netherlands – Europe

The Parallel and Distributed Systems Group at TU Delft

Alexandru Iosup

Dick Epema

Grids/Clouds

P2P systems

Video-on-demand

e-Science

Grids/Clouds P2P systems Big Data Online gaming

Home page

<u>www.pds.ewi.tudelft.nl</u>

Publications

see PDS publication database at <u>publications.st.ewi.tugent.m</u>

Varbanescu (now UvA) HPC systems Multi-cores Big Data e-Science

Ana Lucia

VENI

Henk Sips

HPC systems Multi-cores P2P systems

Johan Pouwelse

P2P systems File-sharing Video-on-demand

August 31 2011

Winners IEEE TCSC Scale Challenge 2014

3

What is Cloud Computing? A Descendant* of the Grid Idea

August 6, 2014

Lessons From Grids

A. Iosup, C. Dumitrescu, D.H.J. Epema, H. Li, L. Wolters, How are Real Grids Used? The Analysis of Four Grid Traces and Its Implications, Grid 2006.

A. Iosup and D.H.J. Epema, Grid Computing Workloads, IEEE Internet Computing 15(2): 19-26 (2011)

Dynamic Resource Availability in Grids, Grid 2007, Sep 2007.

Lessons from Grids, via a Detour The Overwhelming Growth of Knowledge

When 12 men founded the Royal Society in 1660, it was	Number of Publications	1993 1997		1997 2001	
possible for approximation in the second		9	733	1,265,808	
person to end	730	1,347,985			
scientific know			33	342,535	
the last 50 ye they don't know [it all]				318,286	
been the pace			51	336,858	
advance that even the best	France	203,814		232,058	
scientists cannot keep up	Canada	168,331		166,216	
with discoveries at frontiers Italy			98	147,023	
outside their own field."	Switzerland	57,664		66,761	
Tony Blair,	Netherlands	83,600		92,526	
PM Speech, May 2002 Data: King, The scientific impact of nations, Nature'04.					

Source: Jim Gray and "The Fourth Paradigm" (Jan 2007 and, posthumously, 2011), http://research.microsoft.com/en-us/collaboration/fourthparadigm/

Lessons from Grids From Hypothesis to Data

The Fourth Paradigm is suitable for professionals who already know they don't know [enough to formulate good hypotheses], yet need to deliver quickly

- Last few decades: a computational branch simulating complex phenomena
- Today (the Fourth Paradigm): data exploration

unify theory, experiment, and simulation

- Data captured by instruments or generated by simulator
- Processed by software
- Information/Knowledge stored in computer
- Scientist analyzes results using data management and statistics

 $\frac{4\pi G\rho}{-K}$

8

Delft

ena

 $\left(\begin{array}{c} \cdot \\ a \\ a \end{array} \right)$

The Vision: Everyone Is a Scientist! (the Fourth Paradigm)

- Data as individual right, enabling high-quality lifestyle of individuals and modern societal services
- Data as workhorse in creating **commercial services** • by SMEs ($\sim 60\%$ gross value added, for many years) 100% **EU reasons to address Big Data challenges**

Sources: European Commission Annual Reports 2012 & 2013, ECORYS, Eurostat, National Statistical Offices, DIW, DIW econ, London Economics.

Data at the Core of Our Society: The LinkedIn Example The State of LinkedIn

Sources: Vincenzo Cosenza, The State of LinkedIn, <u>http://vincos.it/the-state-of-linkedin/</u>via Christopher Penn, <u>http://www.shiftcomm.com/2014/02/state-linkedin-social-media-dark-horse/</u>

Data at the Core of Our Society: The LinkedIn Example

The State of LinkedIn

3-4 new users every second

Sources: Vincenzo Cosenza, The State of LinkedIn, <u>http://vincos.it/the-state-of-linkedin/</u>via Christopher Penn, <u>http://www.shiftcomm.com/2014/02/state-linkedin-social-media-dark-horse/</u>

11

TUDelft

Sources: Vincenzo Cosenza, The State of LinkedIn, <u>http://vincos.it/the-state-of-linkedin/</u>via Christopher Penn, <u>http://www.shiftcomm.com/2014/02/state-linkedin-social-media-dark-horse/</u>

LinkedIn Is Part of the "Data Deluge"

Data Deluge = data generated by humans and devices (IoT)

- Interacting
- Understanding
- Deciding
- Creating

13

May 2014

Sources: IDC, EMC.

The Data Deluge Is A Challenge for Tech But Good for Us[ers]

- All human knowledge
 - Until 2005: 150 Exa-Bytes
 - 2010: 1,200 Exa-Bytes
- Online gaming (Consumer)
 - 2002: 20TB/year/game
 - 2008: 1.4PB/year/game (only stats)
- Public archives (Science)
 - 2006: GBs/archive
 - 2011: TBs/year/archive

Sources: Vincenzo Cosenza, The State of LinkedIn, <u>http://vincos.it/the-state-of-linkedin/</u>via Christopher Penn, <u>http://www.shiftcomm.com/2014/02/state-linkedin-social-media-dark-horse/</u>

The Challenge: The Three "V"s of Big Data* When You Can, Keep and Process Everything * New Vs later: ours is "vicissitude"

Volume

- More data vs. better models
- Exponential growth + iterative models
- Scalable storage and distributed queries
- Velocity
 - Speed of the feedback loop
 - Gain competitive advantage: fast recommendations
 - Analysis in near-real time to extract value
- Variety
 - The data can become messy: text, video, audio, etc.
 - Difficult to integrate into applications

2011-2012

Adapted from: Doug Laney, "3D data management", META Group/Gartner report, Feb 2001. <u>http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-</u> <u>Management-Controlling-Data-Volume-Velocity-and-Variety.pdf</u>

TUDelft

Too big, too fast, does not comply with traditional DB

The "Data Deluge"

Data Deluge = data generated by humans and devices (IoT)

- Interacting
- Understanding
- Deciding
- Creating

16

May 2014

Sources: IDC, EMC.

Can We Afford This Vision? The Current Tech Big Data = Systems of Systems

Delft

Adapted from: Dagstuhl Seminar on Information Management in the Cloud, http://www.dagstuhl.de/program/calendar/partlist/?semnr=11321&SUOG

Can We Afford This Vision? The Current Tech Monolithic Systems

Stuck in stacks!

2012-2013	18
A. L. Varbanescu and A. Iosup, On Many-Task Big Data Processing:	from
<u>http://www.pds.ewi.tudelft.nl/~iosup/many-tasks-big-data-vision13mtags_v10</u>)0.pdf

The "Big Data cake" in the Data Center

Online Social Networks

Financial Analysts

The Challenge: Can We Afford This Vision? Not with the Current Resources (An Anecdote)

Time magazine reported that it takes 0.0002kWh to stream 1 minute of video from the YouTube data centre...

Based on Jay Walker's recent TED talk, 0.01kWh of energy is consumed on average in downloading 1MB over the Internet.

The average Internet device energy consumption is around 0.001kWh for 1 minute of video streaming For 1.6B downloads of this 17MB file and streaming for 4 minutes gives the overall energy for this one pop video in one year...

1,587,012,214

UDelft

>300GWh = more than some countries in a year, >35MW of 24/7/365 diesel, >100M liters of oil, 80,000 cars running for a year, ...

Source: Ian Bitterlin and Jon Summers, UoL, UK, Jul 2013. Note: Psy has now >2.75 billion views, so roughly 450GWh (Jun 2014).

Can We Afford This Vision? Not with the Current Resources

Data Source: Powering the Datacenter, <u>DatacenterDynamics</u>, 2013 One-third of global data center energy use is in U.S., but growth rates are fastest in emerging economies.

May 2014

21

Sources: DatacenterDynamics and Jon Summers, UoL, UK.

Everyone is a Scientist! Can We Afford This Vision?

I don't know.

But we need to become very efficient. For this, we need to combine sw.eng., distr.sys., parallel sys., DB. Then, we need to show numbers!

Why Big Data Benchmarking?

- Establish and share best-practices in giving quantitative answers to important questions about Big Data
- Use in procurement
- Use in system design
- Use in system tuning and operation
- Use in performance management
- Use in training

August 6, 2014

Big Data in the Data Center: 10 Main Challenges in 4 Categories*

* List not exhaustive

Methodological •

- 1. Experiment compression, both design and actual evaluation
- 2. Beyond black-box testing through testing short-term dynamics and long-term evolution
- 3. Impact of middleware

System-Related

- 1. Reliability, availability, and systemrelated properties
- 2. Massive-scale, multi-site benchmarking
- 3. Performance isolation,

Workload-related

- 1. Workload =Dataset + Activity
- 2. Statistical workload models + analysis of coverage
- 3. Benchmarking performance isolation under various multi-tenancy workloads

Metric-Related

- 1. Beyond traditional performance: variability, elasticity, cost, etc.
- 2. Uniform reporting

multi-tenancy models 2. Unitorn reporting Tosup et al., Taas Cloud Benchmarking: Approaches, Challenges, and Experience, MTAGS 2012.

Guo, Varbanescu, Iosup, Martella, Willke. Benchmarking Graph-Processing Performs: A Vision, ICPE WiP 2014.

SPEC Research Group (RG)

The Research Group of the Standard Performance Evaluation Corporation

Mission Statement

- Provide a platform for collaborative research efforts in the areas of computer benchmarking and quantitative system analysis
- Provide metrics, tools and benchmarks for evaluating early prototypes and research results as well as fullblown implementations

 Foster interactions and collaborations btw. industry and academia

Find more information on: http://research:spec:org

A Call to Arms

- Defining workloads
- Understanding the metrics, datasets, and algorithms used in practice: fill in our survey <u>http://goo.gl/TJwkTg</u>
- Evaluating and reporting on various platforms

Join us within the SPEC RG Cloud Working Group

http://research.spec.org/working-groups/ rg-cloud-working-group.html

26

Agenda

- 1. Everyone is a scientist!
- 2. Benchmarking: let's show the numbers
- 3. Datacenter Workloads
- 4. Cloud Performance & Perf. Variability
- 5. Performance of Graph-Processing Platforms (Giraph, GraphLab, ...)
- 6. BitTorrent World: A MapReduce Workflow
- 7. Elastic MapReduce Performance
- 8. <u>Conclusion</u>

August 6, 2014

Agenda

- 1. Everyone is a scientist!
- 2. Benchmarking: let's show the numbers

Data Center Workloads: Our Team

Alexandru Iosup **TU Delft**

BoTs

Workflows

Big Data Statistical modeling

Dick Epema TU Delft

BoTs Grids

Mathieu Jan TU Delft/INRIA

BoTs Statistical modeling

Ozan Sonmez **TU Delft**

BoTs

Thomas de Ruiter **TU Delft**

MapReduce **Big Data** Statistical modeling

Radu Prodan U.Isbk.

Thomas Fahringer Simon Ostermann U.Isbk.

U.Isbk.

Workflows

August 6, 2014

Statistical MapReduce Models From Long-Term Usage Traces

- Started 2010, excellent studies now exist
- Real traces
 - Yahoo
 - Google
 - 2 x Social Network Provider
 - (currently looking at 2 SME traces)

			Map/Reduce	Sign.	Indirect
Model	Tasks	Correlation	Modeled	Level	Distr. Sel.
Complex Model	Indirect	Run time – Disk	Separately	0.05	Best fits
Relaxed Complex Model	Indirect	Run time – Disk	Separately	0.02	All fits
Safe Complex Model	Direct	Run time – Disk	Separately	0.05	-
Simple Model	Direct	-	Together	0.05	-

August 6, 2014

30

de Ruiter and Iosup. A workload model for MapReduce. MSc thesis at TU Delft. Jun 2012. Available online via TU Delft Library, <u>http://library.tudelft.nl</u>.

Graph Processing Workloads

- No representative workloads, perhaps even algorithm coverage is difficult to analyze
- See work on graph processing

May 2014

Yong Guo TU Delft Graph processing Benchmarking

31

What is a Bag of Tasks (BoT)? A System View

$$W_u = \{J_i | user(J_i) = u\}$$

...that is submitted at most Δs after the first job

 $ST(J') \leq ST(J) + \Delta$

32

- Why Bag of *Tasks*? From the perspective of the user, jobs in set are just tasks of a larger job
- A single useful result from the complete BoT
- Result can be combination of all tasks, or a selection of the results of most or even a single task

Iosup et al., The Characteristics and Performance of Groups of Jobs in Grids, Euro-Par, LNCS, vol.4641, pp. 382-393, 2007.

Applications of the BoT Programming Model

- Parameter sweeps
 - Comprehensive, possibly exhaustive investigation of a model
 - Very useful in engineering and simulation-based science
- Monte Carlo simulations
 - Simulation with random elements: fixed time yet limited inaccuracy
 - Very useful in engineering and simulation-based science
- Many other types of batch processing
 - Periodic computation, Cycle scavenging
 - Very useful to automate operations and reduce waste

33

BoTs Are the Dominant Programming Model for Grid Computing (Many Tasks)

BoTs by Numbers: CPUs, Runtime, Mem

BoTs by numbers: I/O, Files, Remote Sys

Statistical BoT Workload Model

- Single arrival process for both BoTs and parallel jobs
- Validated with 7 grid workloads

A. Iosup, O. Sonmez, S. Anoep, and D.H.J. Epema. The Performance of Bags-of-Tasks in Large-Scale Distributed Systems, HPDC, pp. 97-108, 2008.

August 6, 2014

What is a Wokflow? WF = set of jobs withprecedence (think Direct Acyclic Graph)

Applications of the Workflow Programming Model

- Complex applications
 - Complex filtering of data
 - Complex analysis of instrument measurements
- Applications created by non-CS scientists*
 - Workflows have a natural correspondence in the real-world, as descriptions of a scientific procedure
 - Visual model of a graph sometimes easier to program
- Precursor of the MapReduce Programming Model (next slides)

2012-2013

*Adapted from: Carole Goble and David de Roure, Chapter in "The Fourth Paradigm", <u>http://research.microsoft.com/en-us/collaboration/fourthparadigm/</u>

Workflows Exist in Grids, but Did No Evidence of a Dominant Programming Model

• Traces

Trace	Source	Duration	Number of WFs	Number of Tasks	CPUdays
T1	DEE	09/06-10/07	4,113	122k	152
T2	EE2	05/07-11/07	1,030	46k	41

Selected Findings

Loose coupling

- Graph with 3-4 levels
- Average WF ~10s of jobs
- 75% WFs are <=40 jobs
 95% are <=200 jobs
- 85% WFs take <10 mins

40

Ostermann et al., On the Characteristics of Grid Workflows, CoreGRID Integrated Research in Grid Computing (CGIW), 2008.

Agenda

- 1. Everyone is a scientist!
- 2. Benchmarking: let's show the numbers

Cloud Performance and Performance Variability: Our Team

Alexandru Iosup **TU Delft**

Performance

Variability

Isolation Multi-tenancy Benchmarking

Dick Epema TU Delft

Performance IaaS clouds

Radu Prodan U.Isbk.

Nezih Yigitbasi **TU Delft**

Performance Variability

Athanasios Antoniou TU Delft

Performance Isolation

U.Isbk.

Thomas Fahringer Simon Ostermann U.Isbk.

Some Previous Work (>50 important references across our studies)

Virtualization Overhead

- Loss below 5% for computation [Barham03] [Clark04]
- Loss below 15% for networking [Barham03] [Menon05]
- Loss below 30% for parallel I/O [Vetter08]
- Negligible for compute-intensive HPC kernels [You06] [Panda06]

Cloud Performance Evaluation

- Performance and cost of executing a sci. workflows [Dee08]
- Study of Amazon S3 [Palankar08]
- Amazon EC2 for the NPB benchmark suite [Walker08] or selected HPC benchmarks [Hill08]
- CloudCmp [Li10]
- Kosmann et al.

Production IaaS Cloud Services

Production IaaS cloud: lease resources (infrastructure) to users, operate on the market and have active customers

	Cores	RAM	Archi.	Disk	Cost		
Name	(ECUs)	[GB]	[bit]	[GB]	[\$/h]		
Amazon EC2	Amazon EC2						
m1.small	1 (1)	1.7	32	160	0.1		
m1.large	2 (4)	7.5	64	850	0.4		
m1.xlarge	4 (8)	15.0	64	1,690	0.8		
c1.medium	2 (5)	1.7	32	350	0.2		
c1.xlarge	8 (20)	7.0	64	1,690	0.8		
GoGrid (GG)							
GG.small	1	1.0	32	60	0.19		
GG.large	1	1.0	64	60	0.19		
GG.xlarge	3	4.0	64	240	0.76		
Elastic Hosts (EH)							
EH.small	1	1.0	32	30	£0.042		
EH.large	1	4.0	64	30	£0.09		
Mosso							
Mosso.small	4	1.0	64	40	0.06		
Mosso.large	4	4.0	64	160	0.24		

August 6, 2014

August 6, 2014 Iosup et al., Performance Analysis of Cloud Computing Services for Many Tasks Scientific Computing, (IEEE TPDS 2011).

45

Our Method

- Based on general performance technique: model performance of individual components; system performance is performance of workload + model [Saavedra and Smith, ACM TOCS'96]
- Adapt to clouds:
 - 1. Cloud-specific elements: resource provisioning and allocation
 - 2. Benchmarks for single- and multi-machine jobs
 - 3. Benchmark CPU, memory, I/O, etc.:

Туре	Suite/Benchmark	Resource	Unit
SI	LMbench/all [24]	Many	Many
SI	Bonnie/all [25], [26]	Disk	MBps
SI	CacheBench/all [27]	Memory	MBps
MI	HPCC/HPL [28], [29]	CPU	GFLOPS
MI	HPCC/DGEMM [30]	CPU	GFLOPS
MI	HPCC/STREAM [30]	Memory	GBps
MI	HPCC/RandomAccess [31]	Network	MÚPS
MI	$HPCC/b_{eff}$ (lat.,bw.) [32]	Comm.	μs , GBps

Iosup et al., Performance Analysis of Cloud Computing Services for Many Tasks Scientific Computing, (IEEE TPDS 2011).

Single Resource Provisioning/Release

46

- Time depends on instance type
- Boot time non-negligible

August 6, 2014

Iosup et al., Performance Analysis of Cloud Computing Services for Many Tasks Scientific Computing, (IEEE TPDS 2011).

Multi-Resource Provisioning/Release

• Time for *multi-*resource increases with number of resources

August 6, 2014

Iosup et al., Performance Analysis of Cloud Computing Services for Many Tasks Scientific Computing, (IEEE TPDS 2011).

CPU Performance of Single Resource

- ECU definition: "a 1.1 GHz 2007 Opteron" ~ 4 flops per cycle at full pipeline, which means at peak performance one ECU equals 4.4 gigaflops per second (GFLOPS)
- Real performance
 0.6..0.1 GFLOPS =
 ~1/4..1/7 theoretical peak

August 6, 2014

Iosup et al., Performance Analysis of Cloud Computing Services for Many Tasks Scientific Computing, (IEEE TPDS 2011).

49

HPLinpack Performance (Parallel)

- Low efficiency for parallel compute-intensive applications
- Low performance vs cluster computing and supercomputing

August 6, 2014

Iosup et al., Performance Analysis of Cloud Computing Services for Many Tasks Scientific Computing, (IEEE TPDS 2011).

Production Cloud Services

- Production cloud: operate on the market and have active customers
- IaaS/PaaS: Amazon Web Services (AWS)
 - EC2 (Elastic Compute Cloud)
 - S3 (Simple Storage Service)
 - SQS (Simple Queueing Service)
 - SDB (Simple Database)
 - FPS (Flexible Payment Service)

PaaS: Google App Engine (GAE)

- Run (Python/Java runtime)
- Datastore (Database) ~ SDB
- Memcache (Caching)
- URL Fetch (Web crawling)

 \bullet

51

Our Method Performance Traces

[1/3]

- CloudStatus*
 - Real-time values and weekly averages for most of the AWS and GAE services
- Periodic performance probes
 - Sampling rate is under 2 minutes

* www.cloudstatus.com

August 6, 2014

August 6, 2014 Iosup, Yigitbasi, Epema. On the Performance Variability of Production Cloud Services, (IEEE CCgrid 2011).

Our Method Analysis

[2/3]

52

- 1. Find out whether variability is present
 - Investigate several months whether the performance metric is highly • variable
- Find out the characteristics of variability 2.
 - Basic statistics: the five quartiles (Q_0-Q_4) including the median (Q_2) , the • mean, the standard deviation
 - Derivative statistic: the IQR (Q₃-Q₁)
 - CoV > 1.1 indicate high variability
- 3. Analyze the performance variability time patterns
 - Investigate for each performance metric the presence of • daily/monthly/weekly/yearly time patterns
 - E.g., for monthly patterns divide the dataset into twelve subsets and for each subset compute the statistics and plot for visual inspection

August 6, 2014

August 6, 2014 Iosup, Yigitbasi, Epema. On the Performance Variability of Production Cloud Services, (IEEE CCgrid 2011).

Our Method[3/3]Is Variability Present?

• Validated Assumption: The performance delivered by production services is variable.

- Deployment Latency [s]: Time it takes to start a small instance, from the startup to the time the instance is available
- Higher IQR and range from week 41 to the end of the year; possible reasons:
 - Increasing EC2 user base
 - Impact on applications using EC2 for auto-scaling

- **Get Throughput [bytes/s]:** Estimated rate at which an object in a bucket is read
- The last five months of the year exhibit much lower IQR and range ٠
 - More stable performance for the last five months
 - Probably due to software/infrastructure upgrades

August 6, 2014

August 6, 2014 Iosup, Yigitbasi, Epema. On the Performance Variability of Production Cloud Services, (IEEE CCgrid 2011).

AWS Dataset (3/4): SQS

- Average Lag Time [s]: Time it takes for a posted message to become available to read. Average over multiple queues.
- Long periods of stability (low IQR and range)
- Periods of high performance variability also exist

AWS Dataset (4/4): Summary

All services exhibit time patterns in performance

- EC2: periods of special behavior
- SDB and S3: daily, monthly and yearly patterns
- SQS and FPS: periods of special behavior

August 6, 2014 Iosup, Yigitbasi, Epema. On the Performance Variability of Production Cloud Services, (IEEE CCgrid 2011).

Summary

- Evaluated several commercial alternatives
- IaaS clouds: lower performance than theoretical peak
 - Especially CPU (GFLOPS)
 - Some users have started to lease opportunistically: lease many machines, retain only machines with best performance
- IaaS and PaaS clouds: high performance variability
 - Difficult to enforce performance guarantees

Agenda

- 1. Everyone is a scientist!
- 2. Benchmarking: let's show the numbers

Graph Processing: Our Team

Alexandru Iosup **Dick Epema** TU Delft **TU Delft** Big Data & Clouds Big Data & Clouds Res. management Res. management Systems, Benchmarking **Systems**

Mihai Capota **TU Delft** Big Data apps Benchmarking

Ana Lucia Varbanescu U. Amsterdam Graph processing **Benchmarking**

Claudio Martella **VU** Amsterdam Graph processing

Yong Guo Marcin Biczak **TU Delft TU Delft** Graph processing Big Data & Clouds **Benchmarking Performance & Development**

August 6, 2014

Platform diversity

 Platform: the combined hardware, software, and programming system that is being used to complete a graph processing task.

What is the performance of these platforms?

- Graph500
 - Single application (BFS), Single class of synthetic datasets
- Few existing platform-centric comparative studies
 - Prove the superiority of a given system, limited set of metrics

Our vision: a benchmarking suite for graph processing across all platforms

Our Method

A benchmark suite for

performance evaluation of graph-processing platforms

- 1. Multiple Metrics, e.g.,
 - Execution time
 - Normalized: EPS, VPS
 - Utilization
- 2. Representative graphs with various characteristics, e.g.,

http://bit.ly/10hYdIU

Gra

- Size
- Directivity
- Density
- 3. Typical graph algorithms, e.g.,
 - BFS
 - Connected components

August 6, 2014

Guo, Biczak, Varbanescu, Iosup, Martella, Wiltke. How Well do Graph-Processing Platforms Perform? An Empirical Performance Evaluation and Analysis

Selection and Design of Performance Metrics for Graph Processing

- Raw processing power
 - Execution time
 - Actual computation time
 - Edges/Vertices per second
- Resource utilization (sys)
 - CPU, memory, network

- Scalability
 - Horizontal vs. vertical
 - Strong vs. weak
- Overhead
 - Data ingestion time
 - Overhead time
- Elasticity (?)

Dataset Selection: Application Domains

• Number of vertices, edges, link density, size, directivity, etc.

	Graphs	#V	#E	d	$\bar{\mathbf{D}}$	Directivity
G 1	Amazon	262,111	1,234,877	1.8	4.7	directed
G 2	WikiTalk	2,388,953	5,018,445	0.1	2.1	directed
G3	KGS	293,290	16,558,839	38.5	112.9	undirected
G 4	Citation	3,764,117	16,511,742	0.1	4.4	directed
G5	DotaLeague	61,171	50,870,316	2,719.0	1,663.2	undirected
G 6	Synth	2,394,536	64,152,015	2.2	53.6	undirected
G 7	Friendster	65,608,366	1,806,067,135	0.1	55.1	undirected

GR/

The Game Trace

66

Archive

SNAF

Graph-Processing Algorithms

- Literature survey of of metrics, datasets, and algorithms
 - 10 top research conferences: SIGMOD, VLDB, HPDC
 - Key word: graph processing, social network
 - 2009–2013, 124 articles

Class	Examples	%
Graph Statistics	Diameter, PageRank	16.1
Graph Traversal	BFS, SSSP, DFS	46.3
Connected Component	Reachability, BiCC	13.4
Community Detection	Clustering, Nearest Neighbor	5.4
Graph Evolution	Forest Fire Model, PAM	4.0
Other	Sampling, Partitioning	14.8

Y. Guo, M. Biczak, A. L. Varbanescu, A. Iosup, C. Martella, and T. L. Willke. How Well do Graph-Processing Platforms Perform? An Empirical Performance Evaluation and Analysis, IPDPS'14.

Platforms we have evaluated

- Distributed or non-distributed
- Graph-specific or generic

Distributed (Generic)

the graph database

Portability

Distributed (Graph-specific) Non-distributed (Graph-specific)

Y. Guo, M. Biczak, A. L. Varbanescu, A. Iosup, C. Martella, and T. L. Willke. How Well do Graph-Processing Platforms Perform? An Empirical <u>Performance Evaluation and Analysis,IPDPS'14.</u>

BFS: results for all platforms, all graphs

Y. Guo, M. Biczak, A. L. Varbanescu, A. Iosup, C. Martella, and T. L. Willke. How Well do Graph-Processing Platforms Perform? An Empirical Performance Evaluation and Analysis, IPDPS'14.

Scalability: BFS on Friendster

- Using more computing machines/cores can reduce execution time
- Tuning needed, e.g., for GraphLab, split large input file into number of chunks equal to the number of machines

The CPU utilization: computing node

- YARN and Hadoop exhibit obvious volatility
- The CPU utilization of graph-specific platforms is lower

Overhead: BFS on DotaLeague

 The percentage of overhead time is diverse across the platforms, algorithms, and graphs—tuning is only sometimes an option

Key Findings From the Study of 6 Platforms

- Performance is function of (Dataset, Algorithm, Platform, Deployment)
 - Previous performance studies may lead to tunnel vision
 - Also looked at data structure, for CPU/GPU (submitted to ICPE'15)
- Platforms have their own drawbacks (crashes, long execution time, tuning, etc.)
- Some platforms can scale up reasonably with cluster size (horizontally) or number of cores (vertically)
 - Strong vs weak scaling still a challenge—workload scaling tricky

Y. Guo, M. Biczak, A. L. Varbanescu, A. Iosup, C. Martella, and T. L. Willke. How Well do Graph-Processing Platforms Perform? An Empirical Performance Evaluation and Analysis.IPDPS'14.

GPUs vs CPUs: All-Pairs Shortest Path

Pender and Varbanescu. MSc thesis at TU Delft. Jun 2012. TU Delft Library, <u>http://library.tudelft.nl</u> .

GPUs vs CPUs: BFS vs Data Format, E/V-based

Pender and Varbanescu. MSc thesis at TU Delft. Jun 2012. TU Delft Library, http://library.tudelft.nl .

	Dataset				
WT	Wikipedia Talk Network				
CR	California Road Network				
1M	Graph 1M				
SW	Stanford Web Graph				
EU	EU Email Communication Network				
СН	Chain 100K				
ST	Star 100K				
ES	Epinions Social Network				
64K	Graph 64K				
wv	Wikipedia Vote				
4K	Graph 4K				

However, data format can also determine performance

Agenda

- 1. Everyone is a scientist!
- 2. Benchmarking: let's show the numbers

BTWorld: Our Team

Alexandru Iosup
TU DelftDick Epema
TU DelftBig Data & Clouds
Res. managementBig Data & Clouds
Res. managementSystems, BenchmarkingSystems

Mihai Capota TU Delft Big Data apps Benchmarking

Jan Hidders

Tim Hegeman

August 6, 2014

Benchmarking MapReduce Systems

		Queries/Jobs	Workload Diversity	Data Set	Data Layout	Data Volume
MRBench [15] business queries		high	TPC-H	relational data	3 GB	
N-body	Shop [14]	filter and correlate data	reduced	N-body simulations	relational data	50 TB
Dis	Co [6]	co-clustering	reduced	Netflix [29]	adjacency matrix	100 GB
MadL	.INQ [7]	matrix algorithms	reduced	Netflix [29]	matrix	2 GB
ClueW	eb09 [30]	web search	reduced	Wikipedia	html	25 TB
GridMix [16	6], PigMix [17]	artificial	reduced	random	binary/text	variable
HiBench [3]], PUMA [32]	text/web analysis	high	Wikipedia	binary/text/html	variable
WL S	uites [12]	production traces	high	-	-	-
BT	World	P2P analysis	high	BitTorrent logs	relational data	14 TB
10 ⁵ 10 ⁴ 10 ³ 10 ² 10 ¹				10 ⁵ Non scal 10 ⁴ 10 ⁴ 10 ⁴ 10 ⁴ 10 ¹ 10 10 10 10	1-linear ing $p^2 10^3 10^4$ ataset Size [MB]	10 ⁵
_	ToT SeT SwT SwT	AR AS AH TKTC AH TKTC TKTC TKTC TKSC	TKHG TKNDH THS TTS TTS		Ť UDe	lft

Observing BitTorrent: Managing A Typical Global Distributed System

Observing BitTorrent: Managing A Typical Global Distributed System

 [1] https://sandvine.com/downloads/general/global-internet-phenomena/ 2013/2h-2013-global-internet-phenomena-report.pdf
 [2] http://www.bittorrent.com/company/about/ces_2012_150m_users

Observing BitTorrent: Managing A Typical Global Distributed System

The BTWorld Use Case (When Long-Term Traces Do Not Exist) Collected Data Users

- Ongoing longitudinal study, since 2009
- Data-driven project: data first, ask questions later
- Over 15TB of data, 1 file/tracker/sample
- Timestamped, multi-record files
 - Hash: unique id for file
 - Tracker: unique id for tracker
 - Information per file: seeders, leechers
 - Structured and semi-structured data

The BTWorld Use Case (When Long-Term Traces Do Not Exist) Analyst Questions

- How does the number of peers evolve over time?
- How long are files available?
- Did the legal bans and tracker take-downs impact BT?
- How does the location of trackers evolve over time?
- Etc.

These questions need to be translated into queries

Hegeman, Ghit, Capotã, Hidders, Epema, Iosup. <u>The BTWorld</u> <u>Use Case for Big Data Analytics: Description, MapReduce</u> <u>Logical Workflow, and Empirical Evaluation</u>.IEEE BigData'13

The BTWorld Workflow

The BTWorld Workflow

86

May 2014

The BTWorld Workload

May 2014

87

The BTWorld Workload

May 2014

88

MapReduce-based Workflow for the BTWorld Use Case **Query Diversity**

- Queries use different operators, stress different parts of system
- This kind of workflow is **not** modeled well by singleapplication benchmarks

Global Top K Trackers (TKT-G):

SELECT * FROM logs NATURAL JOIN (SELECT tracker FROM TKTL GROUP BY tracker ORDER BY MAX(sessions) DESC LIMIT k);

Active Hashes (AH):

SELECT timestamp, COUNT(DISTINCT(hash)) FROM logs GROUP BY timestamp;

Hegeman, Ghit, Capotã, Hidders, Epema, Iosup. <u>The BTWorld</u> <u>Use Case for Big Data Analytics: Description, MapReduce</u> <u>Logical Workflow, and Empirical Evaluation</u>.IEEE BigData'13

Cluster configuration—DAS4

Cluster size	24 nodes
Map slots	92
Reduce slots	92
Memory per task	6 GiB
Total cluster memory	552 GiB
Scheduler	FIFO
HDFS replication	2

Representative for <u>SMEs</u>

	May 2014							90	
Μ.	Capota, E	B. Ghit,	T. Hegema	ın, D. Eper	a, and A	A. IOSU	p. v fo	r	
	Vicissitu	de: The	Challenge	of Scalin	g Comple	ex Big	Data Wo	rkflows, :	In
	the IEEE/	ACM CCGF	RID (SCALE	Challenge	2014).	2014.	Winner	of Challer	nge.

Variety

the IEEE/ACM CCGRID (SCALE Challenge 2014). 2014. Winner of Challenge.

Workload Does Not Scale Linearly

May 2014 M. Capota, B. Ghit, T. Hegeman, D. Epema, and A. Iosup. V for Vicissitude: The Challenge of Scaling Complex Big Data Workflows, In the IEEE/ACM CCGRID (SCALE Challenge 2014). 2014. Winner of Challenge.

Results

- Long vs Short queries
 - Short relatively scale-free
 - Long do not scale super-linearly
- Possible to tune systems to avoid effects of vicissitude

May 2014

Workflows = Data Vicissitude Use Case: Monitoring Large-Scale Distributed Computing System with 160M users

Hegeman, Ghit, Capotã, Hidders, Epema, Iosup. <u>The BTWorld Use</u> <u>Case for Big Data Analytics: Description, MapReduce Logical</u> <u>Workflow, and Empirical Evaluation</u>.IEEE BigData'13

Beyond **BTWorld**

BitTorrent	Trackers	Swarms	Hashes
Finance	Stock markets	Stock listings	Stocks
Tourism	Travel agents	Vacation packages	Venues

•Monitoring large scale distributed computer systems

•Benchmarking

May 2014

Agenda

- 1. Everyone is a scientist!
- 2. Benchmarking: let's show the numbers

Elastic MapReduce: Our Team

Bogdan Ghit TU Delft Systems Workloads

Dick Epema TU Delft Big Data & Clouds Res. management Systems

a Alexandru Iosup TU Delft ouds Big Data & Clouds nent Res. management Systems, Benchmarking

August 6, 2014

Dynamic Big Data Processing

Fawkes = Elastic MapReduce via Two-level scheduling architecture

Frameworks

Elastic MapReduce

MapReduce framework

- Distributed file system
- Execution engine
- Data locality constraints

Because workloads may be time-varying:

- Poor resource utilization
- Imbalanced service levels

Grow and shrink MapReduce

- High resource utilization
- Reconfiguration for balanced service levels
- Break data locality

GROW

SHRINK

No data locality

Performance?

Relaxed data locality

Better performance?

FAWKES in a nutshell

- 1. Size of MapReduce cluster
 - Changes dynamically
 - Balanced by weight
- 2. Updates dynamic weights when
 - New frameworks arrive
 - Framework states change
- 3. Shrinks and grows frameworks to
 - Allocate new frameworks (min. shares)
 - Give fair shares to existing ones

Ghit, Yigitbasi, Iosup, Epema, Iosup. Balanced Resource Allocations Across Multiple Dynamic MapReduce Clusters. ACM SIGMETRICS 2014.

 W_i

How to differentiate frameworks? (1/3)

By demand – 3 policies:

- Job Demand (JD)
- Data Demand (DD)
- Task Demand (TD)

VS.

How to differentiate frameworks? (2/3)

By usage – 3 policies:

- Processor Usage (PU)
- Disk Usage (DU)
- Resource Usage (RU)

егт

How to differentiate frameworks? (3/3)

By service – 3 policies:

- Job Slowdown (JS)
- Job Throughput (JT)
- Task Throughput (TT)

VS.

Ghit, Yigitbasi, Iosup, Epema, Iosup. Balanced Resource Allocations Across Multiple Dynamic MapReduce Clusters. ACM SIGMETRICS 2014.

elft

Experimental setup

DAS-4 multicluster system:

- 200 dual-quad-core compute nodes
- 24 GB memory per node
- 150 TB total storage
- \circ 20 Gbps InfiniBand

Hadoop deployment:

- Hadoop-1.0 over InfiniBand
- 6 map + 2 reduce slots per node

ЭПТ

128 MB block size

Overview of experiments:

- Most experiments on 20 nodes
- Up to 60 working nodes
- \circ More than 3 months system time

MapReduce applications

Application	Туре	Input	Output
Wordcount (WC)	CPU	200 GB	5.5 MB
Sort (ST)	Disk	200 GB	200 GB
PageRank (PR)	CPU	50 GB	1.5 MB
K-Means (KM)	Both	70 GB	72 GB
TrackerOverTime (TT)	CPU	100 GB	3.9 MB
ActiveHashes (AH)	Both	100 GB	90 KB
BTWorld (BT)	Both	100 GB	73 GB

Synthetic benchmarks:

- HiBench suite
- Single applications
- Random datasets

Real-world applications:

- **BTWorld workflow**
- o 14 Pig queries
- BitTorrent monitoring data

Ghit, Capota, Hegeman, Hidders, Iosup, Epema, "The Challenge of Scaling Complex Big Data Workflows", CCGrid 2014. SCALE Challenge Winner.

Performance of dynamic MapReduce

10 core +10xTR 10 core +10xTC vs. 20 core nodes

TR - **good** for compute-intensive workloads.

TC - **needed** for disk-intensive workloads.

Dynamic MapReduce: < 25% overhead

Performance of FAWKES

Up to 20% lower slowdown

None – Minimum shares

- **EQ** EQual shares
- **TD** Task Demand
- **PU** Processor Usage
- JS Job Slowdown

Ghit, Yigitbasi, Iosup, Epema, Iosup. Balanced Resource Allocations Across Multiple Dynamic MapReduce Clusters. ACM SIGMETRICS 2014.

Speedup when growing (1/2)

TR nodes deliver good performance for CPU bound workloads

еп

Ghit, Yigitbasi, Iosup, Epema, Iosup. Balanced Resource Allocations Across Multiple Dynamic MapReduce Clusters. ACM SIGMETRICS 2014.

Speedup when growing (2/2)

(Only) TC nodes deliver good performance for disk-bound workloads

еіт

Ghit, Yigitbasi, Iosup, Epema, Iosup. Balanced Resource Allocations Across Multiple Dynamic MapReduce Clusters. ACM SIGMETRICS 2014.

Slowdown when shrinking

Job slowdown increases linearly with the amount of replicated data

eit

Ghit, Yigitbasi, Iosup, Epema, Iosup. Balanced Resource Allocations Across Multiple Dynamic MapReduce Clusters. ACM SIGMETRICS 2014.

Take-home message

- 1. Dynamic MapReduce relaxes data locality
- 2. FAWKES policies can reduce imbalance between frameworks
- 3. More aggressive policies?

GROW

Ghit, Yigitbasi, Iosup, Epema, Iosup. Balanced Resource Allocations Across Multiple Dynamic MapReduce Clusters. ACM SIGMETRICS 2014.

SHRINK

Agenda

- 1. Everyone is a scientist!
- 2. Benchmarking: let's show the numbers

The DAS-4 Infrastructure

UvA/MultimediaN (72)

- Used for research in systems for over a decade
 - > 1,600 cores (quad cores)
- UvA (32) > 2.4 GHz CPUs, GPUs
 - > 180 TB storage
 - ➢ 10 Gbps Infiniband
 - ➤ 1 Gbps Ethernet
 - Koala grid scheduler

Performance of Resizing using Static, Transient, and Core Nodes

(50 jobs, 1-50GB)

B. Ghit, N. Yigitbasi, A. Iosup, and D. Epema. Balanced Resource Allocations Across Multiple Dynamic MapReduce Clusters, SIGMETRICS 2014.

117

Kondunion Take-Home Message

- Big Data is necessary and grand challenge
- **Big Data = Systems of Systems**
 - Big data programming models have ecosystems
 - Stuck in stacks!
 - Many trade-offs, many problems

In this talk

- Predictability challenges: we need to understand workload (modeling) and performance (benchmarking)
- Early steps for benchmarking big data: graph processing, data processing workflows
- Elasticity challenges: dynamic MapReduce

Thank you for your attention! Questions? Suggestions? Observations?

More Info:

- http://www.st.ewi.tudelft.nl/~iosup/
- <u>http://www.pds.ewi.tudelft.nl/</u>
- http://research.spec.org

Alexandru Iosup

A.Iosup@tudelft.nl

(or google "iosup") Parallel and Distributed Systems Group Delft University of Technology

119

August 6, 2014